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Modeling and diagnostic strategies employed in the development
and employment of the UW Hybrid Isentropic Model including
some which have been utilized at NCEP will be briefly reviewed.
Within an emphasis on the importance of long range transport and
ensuring reversibility, results will be presented which illustrate the

relevance of these considerations. The aim of the review and results

presented, however, will be: 1) to raise key issues faced in advancing

accuracies 1n the simulation of weather and climate and, 2) to foster
discussion on strategies to i1solate the strengths and current limitations
of weather and climate models within a unified modeling endeavor
envisaged as a key component of the Earth System Modeling

Framework.




Northern Winter/ Southerm Summer
100 mb 1 2 3
19 - Coid 11 - Colid ~19 - Cold
O - Unbiased 3 - Unbiased O - Unbiased
g -wWarm 5 - Warm O - Warm
500 mb 4 5 6
14 - Cold 19 - Colid 8 - Coid
2 - Unbiased O - Unbiased 6 - Unbiased
3 -Warm O -Warm 5 - Warm
1000 mb
90N S0N 50S a0sS
Northerm Summer/Southerm Winter
100 mb 1 2 3
16 - Cold 10 - Cold 15 - Cold
0O - Unbiased 1 - Unbiased 1 - Unbiased
O -WwWarm 5 - VWarm O - Warm
500 mb 4 5 S
10 - Coid 16 - Cold 12 - Coid
3 - Unbiased O - Unbiased 1 - Unbiased
3 -VvVWarm O - vWwWarm 3 - Warm
1000 mb
SON SON S50S 20S
Figure 1: A summarized tabulation of the number of climate model simlated temnmperatures classified

predominately cold, warm or unbiased relative to observations within the six regions indicated. This

tabulation was summarized from Table 4 of the WMO Report, “An Intercomparison of the Climate

Simulated by 14 Atmospheric General Circulations Models™ (Boer et al. 1991).




Isentropic Efficiency Factor
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Mintz’s perspective
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Modeling and Analys

Donald R. Johnson Tom H. Zapotocny

Todd K. Schaack Allen J. Lenzen

Space Science and Engineering Center, University of Wisconsin — Madison

s of the Earth’s Hydrologic Cycle

Introduction

A key aim of this research is to further understanding of global water
vapor and inert trace constituent transport in relation to climate change
through analysis of simulations produced by the global University of
Wisconsin (UW) hybrid i pic-sigi i models. Ad i
the accuracy of the simulation of water substances, aerosols, chemical

constituents, potential vorticity and ic exch are

all critical to DOE’s goal of accurate climate prediction on decadal to
ial time scales and i t ic effects. Research has
established that simulations of the transport of water vapor, and inert and
chemical constituents are remarkably more accurate in hybrid isentropic
models than in cor ding sigma di models.

Primary Objectives:

=Advance the modeling of climate change by developing an isentropic
hybrid model for global and regional climate simulations.

=Advance the understanding of physical processes involving water
substances and the transport of trace constituents.

=Diagnostically examine the limits of global and regional climate
predictability imposed by inherent limitations in the simulation of trace
i transport, hydrologic p and cloud lif¢ 1

Key Findings:

=The results demonstrate the viability of the UW g- h model for long
term climate integration, numerical weather prediction and chemistry.

=The studies document that no insurmountable barriers exist for
realistic simulations of the climate state with the hybrid vertical
coordinate.

=Experiments reported here demonstrate a high degree of numerical
accuracy for the UW ¢- h model in simulating reversibility and potential
vorticity transport over 10 day period that corresponds to the global
residence time of water vapor.

=The UW hybrid g- h model simulates seasonally varying and interannual
climate scales realistically, includi I ci i iated
with EI Nino/La Nina events.
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A. Design of Model Vertical Coordinate
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Fig. 4. Bivariate distributions of ozone and a proxy trace ozone. The “Day 10 distributions from
the UW g- h model, UW g- S model, and T42 CCM3 are shown in panels (A)-(C) respectively.

Fig. 1. Schematic of meridional cross sections along 104E for 05 August 1981. The red lines represent
potential temperature; the black lines represent UW g~ h model surfaces; the green lines represent scaled sigma
‘model surfaces.

B. Accuracy Analysis of Transport and
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g

Table 1. Results from analysis of variance globally for the difference of equivalent potential temperature
minus its trace (-t Ge) and three components at day 10. Units of variance are the square of Kelvin
temperature (K?). Quantity in parenthesis is the RMS temperature difference (+K).
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Fig. 3. Same as Fig. 2 except for CCM3 running at T42 horizontal resolution.

7 SENTT The first three columns respectively list the variances of 1) the differences about the area mean
T S e difference, 2) area mean differences about the grand mean difference and 3) the variance of the grand
e o A mean difference. The last column lists the total variance of the differences.
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0 [ C. UW g- h Climate Simulations
o able comparison of annually averaged fields from the 13-year - h model climate simulation to
S . 1 /‘\& Table 2. A f annuall; d fields from the 13-year UW g-h model cl imul
s M N observed values. Observational estimates are from a summary by Hack et al. 1998,
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Fig. 7. The distribution of annual vertically averaged heating (101 K/Day) from the
last 13 years of a 14 year climate run with UW g- h model.

Fig. 8. The time averaged distributions of precipitation (mmy/day) from the 13 year

UW g- h model climate simulation for DIF (A) and JJA (B) and from the Xie and
Arkin precipitation climatology for 1979-99 for DIF (C) and JJA (D).

D. NCEP and NASA Collaborative Studies
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Fig. 9. Fifteen month record of Anomaly Correlation from the UW g- h model
and NCEP Global Forecast System.

Regional Air Quality Modeling System (RAQMS)
Collaboration - NASA Langley and the University of Wisconsin - Madison
s lobal/regional) cher o imilatior
V Hybrid g-h Model UW - NM

Regional non-hydrostatic model

system

Global model
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Fig. 6. Global distributions of the difference (DJF 1987-88 minus DJF 1988-89) between seasonally average precipitationFig 10. The UW hybrid model forms the global component of the RAQMS data

for DIF 1987-88 and DIF 1988-89 (mm/day) from the (A) Xie and Arkin (1997) climatology
and (B) UW g- h model climate simulation.

assimilation system. Figure B shows tropospheric ozone burden (DU) for June-July
1999 from the RAQMS assimilation while Fig. A is the satellite observed estimate.




A Statement of Principle Concerning Model Diversity and Diagnostics in
Relation to the Earth System Modeling Framework (ESMF)

“Within the context of an umbrella for model diagnostics and
validation, lets us strive to develop an assessment strategy and
capability for advancing global models and the underlying science
that 1s independent of the vested interests and developers of model,

whether they be in the government, academic or private sectors.
At the same time, the effort should also ensure the mutual interests
and activities of the major centers and their scientists in a
community effort that 1solates deficiencies and shortcomings of
global models while advancing modeling accuracies and
understanding of global and regional modeling of weather and
climate”.




Several Underlying Considerations Concerning NOAA's
involvement in the ESMF

The following are several underlying considerations aimed to
facilitate NOAA’s development of weather and climate models under
the unified modeling effort envisaged within the ESMF as prepared
by Donald R. Johnson, NCEP Special Project Scientist in response to
Louis Uccellini's request as the Director of NCEP:

» The agreement that “model diversity within a community
framework 1s required for progress in both weather and climate
models” 1s predicated on the premise that no single model or
approach to modeling the weather climate state at this time or 1n the
foreseeable future has achieved the level of accuracy needed for
weather and climate prediction.




- Strategies should focus on ascertaining the strengths and weaknesses of models in

relation to advancing NOAA'’s capabilities for weather and climate prediction
broadly defined.

- The underlying issue is how through collaborative utilization of the ESMF and
working partnerships can NOAA and the larger scientific community advance
understanding and accuracies for weather and climate prediction.

- Advancing understanding and prediction of weather and of climate are
complementary to each other in implementing an environmental forecasting
capability in NOAA that serves the nation’s larger interests.

- Within the effort to advance weather and climate prediction for their own
purposes and also to mutually complement each other, there must be recognition on
the part of the science community, theoreticians, modelers, diagnosticians, and
operational forecasters that all have a stake and need to contribute to this effort.

- The challenge then is how to ensure the active engagement of not only those
within NOAA including ESMF partners, but also the larger scientific community.




For those who focus on the capabilities of global
models to simulate monsoons, regional climate and
medium range weather prediction and those who
recognize the fundamental importance of water,
moist thermodynamic processes, cloudiness and

its related impact of radiation and surface energy
exchange, there should be common agreement
that the scientific challenges in modeling weather
and climate are one and the same.




While the focus on carbon and global warming lies somewhat
outside of the focus on medium range weather and seasonal
climate forecasts, there 1s the emerging relevance of aerosols, the
biosphere and related biogeochemical processes, diurnally varying

land and surface boundary conditions and other processes being

brought to the forefront that links all. As such, advancing

accuracies 1n the simulation of weather and climate in the coming
decade must be viewed as common challenge, particularly as
attention 1s given to implementing an environmental forecasting

capability that serves the nation’s larger interests.




1. Strategies to assess numerical accuracies of global models utilizing assimilated data as
initial conditions:

a. Pure error differences of potential temperature, equivalent potential temperature, and
potential vorticity in relation to appropriate conservation with and without moist
convective parameterization for differing resolutions, numerics and orders of numerical
accuracies, etc., examined in the form of scatter diagrams, empirical pdfs and profiles of
systematic biases.

b. Global and regional analysis of variance of pure error differences including determination

of systematic biases and component variances---zonal, horizontal, vertical and global.

c. Expansion of the variance of the pure differences, say V(g-tg), yields the sum of the
variances V(g) and V(tg) minus two times the covariance Cov(g,tg).

d. Temporal and spatial integrity of filamentary transport of trace constituents and
conservation of extremum utilizing proxy initial state constituent conditions consisting
of vertically invariant zonal ring and circular symmetric normal distributions as well as
other specified distributions.

. Integrity of transport of water, chemical and aerosol constituents including appropriate

conservation in relation to chemical species, families and process interaction.




A challenge common to weather, climate
and seasonal numerical prediction is the need
to simulate accurately reversible 1sentropic
processes in combination with transport and
sources of energy and entropy. A means to
study model accuracy 1s to determine its

capability to simulate the appropriate
conservation of potential and equivalent
potential temperature as surrogates of dry and
moist entropy under reversible adiabatic
processes 1n which clouds form, evaporate
and precipitate.




An NCAR Reviewers Comment

It 1s doubtful that strict global conservation of energy and entropy by a
numerical scheme plays a significant role in weather prediction. The
advantage of center difference schemes like Arakawa and Lamb (1977)
In conserving energy and entropy are often over-stated while its
shortcomings (e.g., numerical instability near poles; degradation in
vorticity advection in divergent flows which results in poor correlation

between potential vorticity and passive tracers) being ignored. All
models need sub-grid damping mechanisms. How this can be achieved
can be very different among models. It should be noted that even the
Arakawa and Lamb scheme needs artificial smoothing/filtering (in time
and 1n space) renders all GCMs effectively non-energy conserving and
irreversible. In standard CCM3 the total energy 1s nearly conserved
because, 1) the lost kinetic energy due to hyper-viscosity 1s added back
to the thermodynamic equation and also due in part, 2) a lucky cancel-
lation between the energy conserving errors in dynamics and physics.




An underlying 1ssue to be examined regarding
reversibility 1s to determine to what degree 1f
any can the appropriate conservation of
potential vorticity and dry and moist entropy

be disregarded in the sitmulation of hydrologic
and chemical processes for weather and climate




Bivariate distributions of
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Bivariate Scatter and
Relative Frequency
Distributions and Vertical
Profile of Mean

Differences
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Fig. 1 Empirical relative frequency distributions of simulated differences of equivalent potential
temperature 8, (K) and its proxy 6, (K) fordays 2.5, 5, 7.5 and 10. Panels A and B portray
results from the UW 8- 5 model, C and D for the CCM2 all Eulerian spectral experiment
and E and F are for the CCM3 all semi-Lagrangian experiment. Vertical axes on the left
are scaled linearly, while the vertical axes on the right are scaled logarithmically to retain
larger outliers. With bins interval of 0.1 K for the UW 8- 7 model differences and 1.0 K
for the CCM2/3, the magnitude of the maximum are not directly comparable. Recall that
sum of the product of the ordinate and the bin interval equals unity.
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Relative frequency
distributions for days
2.5,5.0,7.5and 10.0
for four different
versions of CCM at
the 4.3H level
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Relative frequency
distributions for days
2.5,5.0,7.5and 10.0
for four different
versions of CCM at
the 970.4H level
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Results from Analysis of Variance Globally for the Difference
of Equivalent Potential Temperature Minus its Trace (0.-t0.)
and three components at day 10

CCM2 and CCM3

S S5 Se () SG ()
CCM3 37.45(6.12) | 195.77(13.99) | 002 (.15) | 233.24 (15.27)

CCM3/2 27.88 (5.28) 0.09 (0.30) 0.03 (0.16) 28.00 (5.29)

CM2¢all spectral) 10.83 (3.29) 2.12 (1.46) 15.03 (3.88) 27.98 (5.29)

CCM3(all semi-Lagrangian) 3.41 (1.85) 0.64 (0.79) 0.03 (0.16) 4.08 (2.02)

CcCCM3
CCM3 Standard 37.45 (6.12) 195.77 (13.99) 0.02 (.15) 233.24 (15.27)

CCM3 Modified 593 (2.44) 0.25 (.50) 0.01 (.09) 6.19 (2.49)

UW Hybrid Moedel
UWo—-o 0.70(0.84) 0.23(0.48) 0.13(0.35) 1.05 (1.03)

UW O0—7 0.12 (0.35) 0.01 (.10) 0.03 (.16) 0.16 (0.40)

Units of variance are the square of Kelvin temperature (K?). Units of
quantity in parenthesis as the square root of the variance (standard deviation)
are Kelvin temperature (= K).




Rectangular and allied distibutions

Fig. 21. Rectangular and allied distributions.
The expression of f,(x) given above may be written in the form
Sele)=1—]1—r], 0O<z<?2).

This fr.f., and any fr. f. obtained from it by a linear transformation,
is sometimes said to define a triangular distribution.

Page 246 from Mathematical Methods of Statistics by Harald Cramér
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Bivariate Scatter and Relative Frequency
Distributions and Vertical Profile of
Mean Differences

08+ - - 0.0 -

0.1t (0P e
ok 4 0.2+

03+
0.5 71 oy
04+t 0.5+
Ob+
0.1+
o8+
091

03+
(W
0.1t

1 1 1 1 ] D.D_ el } = t i ]
300 4Hoo -20 - [0 20 -c0 0 S0 40 bO BO
THETAE EQUIv. POT. TEMP. - PROXT OELTA (K]

THETAE TRACE

FAOE. DEMS. FUNC.
VERT (H)




CCM3 Result Utilizing Weighted
Overlapping Quadratic Polynomials

Bivariate distribution of ¢, and 76, from CCMS3 utilizing linear combination
of quadratic interpolants for q and 16, in lieu of Hermite cubic interpolants
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CCM3

1-B A(O,) AtE,) e, o, Ag,
Layer/ 5 10 10 10 5 10 10 0 10-0 %%Mass
Day
S5H 0.245 0.279 0.79 0.66 -0.8 -0.4 11243 1123.1 1.3 0.5
13H 0.147 0.120 1.31 2.29 .-2.8 -2.5 782.7 782.5 0.3 1.4
33H 0.407 0.472 1.48 3.96 50.9 71.1 577.4 577.7 -0.2 2.8
64H 0.219 0.357 1.43 1.98 18.7 293 459.4 460.0 -0.5 3.5
99H 0.049 0.135 1.27 1.06 3.2 6.2 400.3 400.4 0.2 3.5
139H 0.011 0.039 1.23 1.11 1.9 2.7 371.0 370.6 7 0.4 4.5
189H 0.033 0.052 1.03 1.02 0.9 1.3 351.1 350.2 0.9 56
251H 0.014 0.032 0.74 0.54 -0.1 0.0 338.1 336.5 1.5 6.8
325H 0.005 0.007 0.70 0.62 -0.4 -0.5 330.6 328.3 2.3 7.9
409H 0.005 0.007 0.63 0.57 -0.7 -1.0 325.8 323.2 2.6 8.9
501H 0.007 0.012 0.63 0.54 -1.4 -2.3 321.5 319.1 2.4 9.6
598H 0.011 0.020 0.67 0.54 -2.3 -3.6 318.3 315.6 2.7 98
695H 0.013 0.024 0.69 0.54 -3.2 -4.9 316.0 313.8 2.2 9.5
786H 0.015 0.024 0.77 0.62 -4.2 -6.3 314.0 312.4 1.6 8.7
866H 0.014 0.021 0.87 0.71 -5.6 -8.1 311.2 312.1 -0.9 7.2
929H 0.014 0.021 0.71 0.61 -6.4 -9.5 307.5 315.8 -8.3 53
970H 0.022 0.043 0.56 0.51 -7.1 -10.4 302.2 317.9 -15.8 2.9
992H 0.053 0.173 0.39 0.45 ~-7.2 -10.6 297.8 318.0 -20.1 1.5
Fig. 1A
CCM3 Modified
1-B A(B,.) Awné, G, o, A8,
Layer/ 5 10 10 10 5 10 <4 10 0] 10-0 %Mass
Day
5H 0.231 0.275 0.75 0.79 0.78 0.66 11242 1123.1 1.1 0.5
13H 0.022 0.024 1.12 1.26 1.07 1.29 782.7 782.5 0.3 1.4
33H 0.021 0.025 1.37 1.43 1.69 1.79 577.5 577.7 -0.2 2.8
64H 0.006 0.006 1.29 1.40 1.39 1.49 459.5 460.0 -0.4 3.5
99H 0.003 0.003 1.16 1.23 1.22 1.31 400.4 400.4 ~-0.0 3.5
I39H 0.004 0.004 1.08 1.17 1.12 1.18 371.0 370.6 0.4 4.5
189H 0.013 0.012 0.87 1.00 0.93 1.03 350.9 350.2 0.7 5.6
251H 0.006 0.007 0.87 0.79 0.91 0.83 337.7 336.5 1.2 6.8
325H 0.002 0.003 0.88 0.77 0.86 0.76 329.8 328.3 1.5 7.9
409H 0.002 0.003 0.80 0.68 0.79 0.68 325.1 323.2 1.9 8.9
501H 0.002 0.004 0.77 0.64 0.77 0.64 321.1 319.1 2.0 9.6
598H 0.004 0.005 0.77 0.65 0.76 0.63 318.0 315.6 2.4 9.8
695H 0.003 0.004 0.80 0.70 0.79 0.69 316.0 313.8 2.2 9.5
786H 0.004 0.005 0.83 0.75 0.82 0.73 313.8 312.4 1.4 8.7
866H 0.005 0.006 0.91 0.84 0.92 0.84 311.1 312.1 -1.0 7.2
929H 0.005 0.007 0.92 0.79 0.94 0.83 309.5 315.8 -6.3 5.3
970H 0.008 0.022 0.85 0.64 0.89 0.72 304.4 317.9 -13.6 2.9
992H 0.027 0.087 0.75 0.43 0.75 0.48 299.5 318.0 -18.5 1.5
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2. Validation of global and regional model simulations and also model assimilated data
in relation to observed surface, radiosonde, satellite, aircraft and like measurements.

As part of this validation, both model simulated data and model assimilated data are compared
against observations to assess how biases in the mean structure and spatial temporal variability
of weather and climate models impacts assimilated data.

For weather models the validation involves instantaneous and temporal comparisons with in
situ and remotely sensed observations to determine forecast error spatially and temporally.

For climate models, the validation involves comparison of simulated distributions
corresponding with observed distributions; the form and modal nature of the distributions,
measures of variation including second and higher order moments, etc.

The key thrusts of both are to assess and determine reasons for model drift and resulting
biases spatially and temporally for both model simulated and assimilated data relative to the
actual atmosphere; --- numerics, filtering, sub grid scale parameterizations, numerical and
physical dissipation, selective numerical damping, non linear interactions, orography,
deficiencies in resolving scale dependency and diurnal forcing of dry and moist convection
including interaction with solar and infrared radiation, etc. Here temporally averaged vertical
profiles of diabatic and other processes including vertically integrated distributions of the
various simulated processes over different geographical regions provide relevant information
for the comparisons.
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3. Comparative analyses of the global distribution of proxy water vapor
brightness temperatures calculated from model simulated profiles of
temperature, pressure and mixing ratio using forward radiance models versus
observed satellite brightness temperatures

The comparison of the model's simulated water vapor brightness temperatures as
determined by forward irradiance calculations 1s to assess drift of a model’s
simulated water vapor distribution from reality for both weather and climate models.
For weather models the comparison involves an instantaneous comparison with the
corresponding satellite observation. For climate models, the comparison involves

temporally averaged water vapor brightness temperatures as simulated versus
corresponding temporally averaged satellite measurements over different seasons,
different regions and different periods of simulations.

Similarly the temporally averaged global distribution of a climate model’s simulated
upwelling irradiance within spectral intervals critical to the determination of the
vertical distributions of temperature and the spatial distributions of other radiatively
active constituents should be compared with the corresponding temporally averaged
observed spectral distribution of radiation by satellites.




4. Diagnostics of transport equations in model coordinates, sigma, isentropic, hybrid sigma
isobaric, hybrid isentropic sigma coordinates — mass, angular momentum, energy,
water vapor, atmospheric constituents, etc.

The following lists capabilities for diagnostics of transport processes that are embodied
within the governing equations of weather and climate models. For maximum insight and
accuracy in the determination of a model’s simulation of the Eulerian components of
transport and also Lagrangian sources and sinks of properties, the diagnostics should be
carried out in the coordinate system employed in the model. Direct diagnostic comparisons
of corresponding global simulations from model to model are only valid in general with
integration over the entire vertical extent of a model’s atmosphere.

a. Transport components, zonal mean and eddy, temporal standing and transient, combination
of zonal and temporal components.

. Lagrangian sources/sinks computed directly or estimated as a residual from evaluation of the
transport equation for a property.

. State structure, vertical averages, zonal averages, vertical-zonal averages, global averages,
averages over regional domains, averages over arbitrary space and time.

. Water vapor — P-E (precipitation minus evaporation), residence times, global, tropics,
extratropics, continental domains, ocean basins, arbitrary regions.




Within these comparisons, it is essential to recognize the condition that the
individual terms of the Eulerian expansion of the Lagrangian source of atmospheric
properties are not invariant, that is, the tendency and divergence as simulated differs
from model to model depending on the particular coordinate system employed in the
representation of the governing equations. In addition, recognition must be made that
the transfers of momentum and of energy across temporally and spatially varying
inclined quasi-horizontal coordinate surfaces by pressure viscous stresses and by work,
respectively, are coordinate dependent processes.

In the comparison of the vertical integral of the governing equations among global
simulations for both weather and climate, efforts should be made to ascertain a given

model’s capabilities to globally conserve mass, momentum, total energy [kinetic,
gravitational potential, and internal (including latent energy of phase changes)] and
other constituents in relation to boundary fluxes. Discrepancies between the vertical
integral of the interior transport of properties and the boundary fluxes are likely sources
of bias and random errors within the model simulated atmosphere.

Beside the potential sources of error just noted, there 1s the issue of a model’s
capability to simulate reversibility of thermodynamic processes associated with
transformations among the various components of total energy that is demanded from
entropy principles in terms of dry and moist adiabatic processes internal to the
atmosphere.
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Dobson Units
RACMS,, Pure Pred February 27", 1222001

Day 15 of simulation where
Ozone 1s forecast

Day 15 of assimilation
RAQMS, .y ASSIMILATED 03 Column February 2 " 12Z 2001

200 200 400 500 &0
Dobson Units

Assimilating 3-d observations of
ozone from HALOE, SAGE and
POAMS satellite platforms.

Column Integrated Ozone
127 February 27, 2001.




S. Three-dimensional distributions of the Lagrangian sources of
entropy expressed as potential temperature change in degrees
per day or specific heat addition determined from diagnostics
employing the isentropic mass continuity equation.

a. Vertically averaged throughout the atmosphere
b. Layered and vertically averaged over specific layers

c. Zonal and temporally zonal averaged

d. Vertical profiles

¢. Regionally averaged vertical profiles over continents, ocean
basins, and subdomains of continents and oceans representative of
different climate regimes

f. Arbitrary time and space domains or combinations there of




6. Compare estimates of the Lagrangian sources of entropy
diagnosed from assimilated data, first guess fields and model
predicted heating from medium range, subseasonal and seasonal
forecasts in accord with 5 above.

7.Determine rotational/irrotational components of transport of mass,
energy, entropy, water vapor and constituent atmospheric
properties by layer or arbitrary combination of layers by vertical
integration.

One key purpose of this diagnostic transport calculation is to study
the role of the temporally averaged mass transport in the long range
transport of atmospheric properties in relation to the systematic sources
of entropy by differential heating within monsoons.

In 1sentropic coordinates, the systematic transport 1s global in
extent, in other coordinates, the transport being by ageostrophic motion
1s more or less restricted to the tropics/subtropics.




8. Mean meridional zonally averaged mass circulations and their
forcing in accord with Eliassen’s concepts as determined for
isobaric, sigma, isentropic, model, and hybrid model coordinates
with partitioning into geostrophic and ageostrophic components

For details concerning the generalized form of transport equations appropriate for the
governing equations of atmospheric models discussed herein, see Johnson, D. R., 1980: A
Generalized Transport Equation for Use in Meteorological Coordinates Systems. Monthly

Weather Review, 108, 733-745.




9. Additional considerations

While the emphasis has been on carrying out diagnostic assessments in the
coordinate system of a model to preclude vertical interpolation errors, the
generalized diagnostic capabilities described heretofore include the capability to
interpolate the state structure of fields from one model coordinate system to
another, as well as the capability to interpolate to isobaric coordinates.
Traditionally diagnostic studies of the general circulation have been conducted in
isobaric coordinates, and as such the 4DDA data sets from reanalysis and
assimilation for medium range weather prediction include expression in isobaric
coordinates to facilitate comparisons. Such comparisons are needed and deserve to
be continued. Certain difficulties emerge however in determination of the
accuracies of a given model. The most obvious is the difficulty that state variables
and boundary exchange processes of the various forms of energy and atmospheric
constituents as well as the transfer of momentum by pressure viscous stresses at the
earth/atmosphere interface are not accurately specified by the isobaric
representation. Neither are the state structure and energy fluxes at the model’s
upper boundary prescribed adequately. Then there are the difficulties that vertical
interpolation errors negate the accuracies needed for assessment of pure error in the
determination of conservation of moist and dry entropies.




